SISMOS – Manualgeo Cap 15

UNIVERSIDAD NACIONAL DE COLOMBIA

 MANUAL DE GEOLOGIA PARA INGENIEROS

 image007

 

GONZALO DUQUE ESCOBAR

http://www.bdigital.unal.edu.co/1572/

 

 

Cap 15 – SISMOS

 San Andreas Fault

Falla San Andrés. California, USA.  Corbis.com

 

 

 

 

Para entender la importancia de los sismos, como materia en la formación del ingeniero, pueden compararse los efectos de varios tipos de desastres naturales, tanto históricos como proyectados.

 

 

Tabla 17. Comparación entre varios tipos desastres naturales.

 

 

Tipo de desastre Principal pérdida conocida de vidas humanas Máxima pérdida de vidas proyectada
Inundación por causa de lluvias Junio 1931, Honan China, el Yangtse y el río Amarillo matan entre 1 y 2 millones de personas 2 – 3 millones de personas
Terremoto Enero 24 de 1556, Shensi China, un terremoto causa 830 mil muertes 1 – 1.5 millones de personas
Tsunami de origen sísmico 1876, Bahía de Bengala, grandes olas de marea matan 215 mil personas 250 – 500 mil personas
Tsunami de origen volcánico Agosto 27 de 1883, Krakatoa, olas de marea matan 36.400 personas 100 a 200 mil personas
Erupción volcánica 1669, Italia. La erupción del Etna destruye Catania, matando 100 mil personas 1 – 2 millones de personas
Tifón o huracán Octubre 8 de 1881, Haiphong Vietnam, un tifón causa 300 mil víctimas 0.5 a 1 millón de personas
Tormenta Noviembre 26 de 1703, Inglaterra, una tormenta causó 8 mil muertes en el Canal 10 – 20 mil personas
Corrimiento de tierras Diciembre 16 de 1920, Kansin China, un corrimiento de tierras mató 200 mil personas 250 – 500 mil personas
Alud Diciembre 13 de 1941, Huarás Perú. Un alud mata 5 mil personas 10 20 mil personas
 Booth-Fitch. La Inestable Tierra, Salvat, 1986

 

 

 

 

15.1 TEORIA DEL REBOTE ELASTICO

 

En la corteza de la Tierra se acumula energía, gracias a procesos de deformación elástica. La figura 89 que ilustra el proceso de liberación de esa energía, muestra como se produce la ruptura de una capa de rocas, después de superar el límite elástico. Allí resulta un conjunto de bloques desplazados a lo largo de las líneas de ruptura.

 

La corteza terrestre está prácticamente, siempre y en todas partes, sometida a algún tipo de tensión. Las mayores concentraciones de tensiones se producen a lo largo de los límites entre las placas corticales, e incluso en su interior donde pueden producirse acumulaciones de tensiones que superen la competencia elástica de las rocas. La ruptura de las rocas debajo de los volcanes se produce debida a los movimientos de ascenso de magma y a la liberación explosiva de gases volcánicos. Siendo esto así, en todo momento existen en el mundo diversos sectores, grandes o pequeños, en que los esfuerzos elásticos acumulados en la corteza terrestre hacen que las rocas que allí se encuentran estén muy próximas a su punto de rotura probable.

 

 

 image008
Figura 91. Teoría del rebote elástico: 1. deformación elástica, 2. fisuras de tensión, 3. fisuras de tensión y compresión, 4. fallamiento y liberación de la energía de deformación por ruptura.

 

 

 

En estas circunstancias, basta un pequeño esfuerzo adicional para desencadenar un terremoto, comprendiéndose, por tanto, que los cambios causados por la tensión consecuente de un gran terremoto pueden provocar una reacción en cadena que se traducirá en una serie de sacudidas grandes o pequeñas. También es factible que las pequeñas alteraciones en el campo de esfuerzos de la corteza, generadas por el paso de depresiones ciclónicas profundas o por los ciclos de mareas terrestres, puedan desencadenar auténticas sacudidas.

 

 

 

  • DOS LECCIONES: SAN FRANCISCO Y KOBE

 

 

La falla de San Andrés en California, comprende cinco trazos principales. Ubicados allí en el continente y mirando al pacífico, las rocas del fondo oceánico se desplazan hacia el norte. Es una falla de rumbo derecho. Por ese desplazamiento se acumulan esfuerzos en la corteza cuya zona de debilidad, por la cual han de liberarse, es la falla de San Andrés. Tres de los trazos señalados liberan energía de manera casi continua, mientras dos de ellos acumulan energía que ha de ser liberada violentamente cada veinte o treinta años. Ante la pregunta ¿pueden producirse en el futuro nuevos terremotos en San Francisco tan violentos como el del año de 1906?: la respuesta inequívoca debe ser si, pues el terremoto de 1906 fue causado por la falla y no al revés.

 

El epicentro del terremoto de Hanshin-Awaji fue localizado en el centro del sistema de fallas Arima-Takatsuki, en el extremo norte de la isla Awaji. Aunque históricamente han ocurrido sismos destructivos en esta región, como el terremoto de 1596 con magnitud 7,5 la poca actividad sísmica reciente hacia que la población la considerara segura. Han pasado 400 años para que ocurra otro terremoto destructivo en el área, probablemente producido por el mismo sistema de fallas cuando se estimaba que el intervalo activo de la falla era cercano a los mil años. La ocurrencia de réplicas y la extensión de la línea de ruptura sobre la falla Nojima, sugieren que éste terremoto fue causado por una ruptura de 40 Km. en el sistema de fallas que forma parte de la microplaca Osaka.

 

 

 

  • PARAMETROS DE UN SISMO

 

Pueden ser estáticos o dinámicos:

 

 image010

Figura 92. Parámetros de un sismo. Son el Foco, el epicentro, la profundidad, la Distancia epicentral, la distancia hipocentral, la Amplitud del movimiento y su duración (coda). Además de sus coordenadas de espacio y de tiempo según el lugar y hora de ocurrencia del evento.

 

 

15.3.1 Estáticos. La profundidad del sismo, el foco o hipocentro que es lugar del evento, el epicentro que es el lugar en la superficie y sobre el anterior, la distancia focal y la epicentral que son la distancia entre la estación en la superficie, y el hipocentro y epicentro, respectivamente.

 

 

15.3.2 Dinámicos. El tiempo u hora del evento, la coda o duración de la excitación, la amplitud que es el desplazamiento de las partículas del suelo, la intensidad que alude a los daños ocasionados, la magnitud que alude a la energía liberada y que se calcula por la amplitud del movimiento y en otros casos por la coda. La frecuencia o el período varían según la energía de la onda en la estación de registro.

 

 

 

15.4 LA SISMOLOGIA

 

En la Tierra el agua juega un papel fundamental en la explicación de los sismos. La construcción de embalses sobre fallas geológicas, induciendo sismos someros de relativa importancia, y la presencia de sismos en la Luna sin hidrosfera así lo señala.

 

En nuestro planeta se denominan terremotos y en la Luna lunamotos. Los sismos que se producen en el fondo oceánico son terremotos. Si la falla de San Andrés no fuera de rumbo, y sus desplazamientos se dieran de manera súbita, bajo mecanismos de fallamientos normales o inversos, se darían levantamientos o hundimientos del fondo oceánico provocando disturbios en el agua del mar. Semejantes disturbios se denominan maremotos (tsunami). Cuando los movimientos sísmicos interesan las aguas de lagos y represas reciben el nombre de seiches.

 

 

15.4.1 Clases de sismos. Las clases de sismos en el planeta son:

 

 

– Los plutónicos. Son el 3% del total de sismos, con profundidad entre 300 km. y 900 km. con un máximo de 900; son los de más energía por la profundidad, aunque el efecto en superficie es tenue pero extenso; se sienten en una zona tan extensa como la comprendida entre Venezuela y Perú. Estos sismos se explican por cambios de fase de las rocas del manto (implosión) o por rupturas en el flujo plástico del manto (explosión). Para diferenciar ambos mecanismos focales nos basamos en la primera onda sísmica que llega a la estación de registro.

 

 

– Los interplaca. Son el 5% del total de los sismos y aparecen a una profundidad entre 70 y 300 km. Son típicos de zonas de subducción, los focos de ellos van delimitando el plano de Benioff. Son los segundos en energía, ya que a esta profundidad la Tierra no almacena tanta como en el caso anterior, pero dado su carácter más somero son destructivos; ejemplo Manizales 1979. El registro de estos sismos, en la superficie, muestra pocas frecuencias altas. Ello se explica por un filtraje de las capas recorridas, ejercido sobre el frente ondulatorio, que podríamos interpretar como un consumo de energía en el transporte de las ondas sísmicas.

 

 

– Los intraplaca. Son sismos de fallas, y representan el 85% de los sismos. Se dan en el interior de las placas tectónicas, cuando la energía se libera por sus zonas más débiles (fallas). Son los más destructivos aunque acumulan menos energía que los anteriores dado que se dan a menos de 70 Km. de profundidad, ejemplo Popayán 1983 y Quindío 1999. Se distinguen porque tienen múltiples premonitores y réplicas, ya que a esta profundidad las rocas, antes que plásticas son rígidas. Los premonitores son las rupturas que anteceden al paroxismo y las réplicas son las que lo suceden. Aunque tengan una magnitud inferior en un grado, su magnitud suele tener una intensidad de un grado más. Para estos sismos por fallas, el mecanismo focal sugiere el tipo de movimiento de la falla. Ver fig 97.

 

 

– Los volcánicos. Son el 7% de los sismos y se presentan a menos de 20 Km. de profundidad. A diferencia de los otros la aureola de daños es de pocos Km. porque el foco es muy puntual y gran parte de la energía se libera en la atmósfera. Cuando las burbujas del magma alcanzan la zona rígida de la corteza y los volátiles disueltos cambian a la fase gaseosa, si la presión del fundido es suficiente, se provoca el emplazamiento del magma en regiones superiores y el escape de gases que deforman y fracturan la corteza.

 

– La velocidad de ascenso del magma, como su volumen, suelen inferirse por la magnitud de los sismos y desplazamiento temporal de los focos sísmicos. La interpretación de éstos fenómenos puede corroborarse a veces por la dinámica que muestre la extensión del campo o de deformaciones (disminuyendo) y la intensidad de las deformaciones (aumentando) en superficie.

 

  • Los sismos artificiales. Son producidos por detonaciones de bombas nucleares, etc. Tienen una profundidad de menos de 2 Km. y foco muy puntual; así gran parte de la energía se libera en la atmósfera.

 

 

 

 image012
Figura 93. Esquema ilustrativo del mecanismo de generación de un maremoto o tsunami. La perturbación en el agua del mar es más eficiente en fallas inversas o normales (desplazamiento vertical con hundimiento y levantamiento del suelo) pero no en fallas de rumbo (desplazamiento horizontal del suelo a lo largo de la falla). En mar abierto la perturbación es rápida, pero en aguas poco profundas las olas pierden velocidad y distancia, pero ganan amplitud. Si el desplazamiento de la corteza a lo largo de la línea de falla es significativo, cuando la magnitud sísmica es elevada y la ruptura presenta fuerte expresión topográfica, se dan profundas modificaciones en la topografía costera, por corrimientos insulares y variaciones del nivel de aguas, generando desastres significativos. Adaptado de La Tierra, Salvat.

 

 

 

– Ruido sísmico. Puede ser natural como el producido por mareas terrestres, olas, viento; o artificial como el producido por vehículos en movimiento, etc.

 

 

 

15.4.2 Ondas sísmicas. Pueden ser de cuerpo (interiores) como las P y las S, y superficiales como las de R y L.

 

 

– Ondas de cuerpo. Las ondas P son compresionales, las partículas se desplazan en la dirección del movimiento, son las primeras en aparecer en el registro por ser las más rápidas. Las S o de cortante, más lentas, llegan de segundas; las partículas se mueven en dirección transversal al movimiento, hacen más daños por tener mayor amplitud, por ser ondas de cortante no cruzan líquidos.

 

 image014
Figura 94. Ondas sísmicas. 1. Onda P, 2. Onda S, 3. Onda R, 4. Onda L, t tiempo, a amplitud.

 

Las ondas sísmicas son la transformación de la energía potencial en energía cinética. Las ondas P son debidas a la elasticidad de volumen del material, mientras las ondas S, son debidas a la elasticidad de la forma del medio de transmisión.

 

La velocidad media aparente de propagación de las ondas P oscila entre 8 y 13 Km./seg y para las ondas S entre 4.5 y 8.5 Km./seg.

 

 

– Ondas superficiales. Después de las anteriores llegan las ondas R y las L (Rayleigh y Love), en las ondas R las partículas se mueven describiendo elipses sobre un plano vertical en la dirección del movimiento. Si el medio es sólido la partícula retrógrada arriba y avanza abajo; si es líquido lo contrario. En las ondas L la elipse está en un plano horizontal transversal a la dirección del movimiento.

 

Las ondas superficiales se forman a partir de las interiores; son ondas largas porque tienen mayor amplitud y su propagación es lenta (3 a 4 Km./seg). Por los efectos desastrosos que producen se llaman sacudidas del “terremoto”. Cualquiera que sea su intensidad, las sacudidas pueden ser bruscas u ondulatorias; las primeras se caracterizan por empujes casi verticales y las segundas por empujes que se comunican oblicuamente.

 

 

 

15.4.3 Instrumentos de registro. Los instrumentos son los sismógrafos y los acelerógrafos. Pueden ser equipos analógicos (mecánicos) y analógicos (electrónicos).

 

 

– Sismógrafo. Consiste en un péndulo equipado con un freno neumático o magnético para que al ocurrir una sola sacudida no trace varios movimientos. De esta manera, cuando hay un sismo, el graficador, después de la primera sacudida quedará quieto para trazar el segundo movimiento, después trazará el tercero sin recibir los efectos de los anteriores, y así sucesivamente, podrá registrar el sismo, movimiento por movimiento.

 

 

 

 image016
Figura 95. Esquema de un sismógrafo: 1.sismógrafo para componente vertical, 2.sismógrafo para componente horizontal, 3. péndulo, 4. tambor de registro. Según La Tierra, Círculo de Lectores.

 

 

 

En el registro se identificarán los intervalos de tiempo y la amplitud de las sacudidas individuales, y la duración total del sismo. Se requieren tres sismógrafos para el registro completo del evento, según sus componentes X, Y, Z, con el propósito de observar un movimiento que de por sí es tridimensional.

 

 

 image018

Figura 96. Sismograma. 1. Onda P, 2. Onda S, 3. Premonitor, 4. Paroxismo, 5. Réplica. La diferencia de tiempo de arribo entre las ondas P y S, se mantiene en las tres sacudidas (3, 4 y 5), pues depende solo de la distancia Estación-Foco.

 

 

– Acelerógrafo. A diferencia del sismógrafo, el péndulo se suspende de un resorte; el acelerograma registra la aceleración del suelo, obteniéndose de él además (indirectamente) la velocidad y el desplazamiento de las partículas; con este registro se puede conocer la respuesta del suelo colocando el instrumento en el piso y la del conjunto suelo‑estructura, colocando el instrumento sobre la estructura. Indirectamente se puede entonces conocer el comportamiento de la estructura.

 

 

La ingeniería sismorresistente busca, entre otras cosas, evaluar la influencia de las condiciones locales de las formaciones naturales en el riesgo sísmico, que no se presente resonancia, es decir, que la frecuencia natural de oscilación de la estructura quede desfasada de las frecuencias dominantes de los diferentes sismos, que se generen desde las fuentes sísmicas locales.

 

 

 

15.4.4 Mecanismos focales. Pueden ser implosión, explosión y cortante: implosión, cuando la primera onda P asciende, (P1­); explosión, cuando la primera onda P desciende (P1¯); cortante cuando se advierten zonas de compresión y distensión conjugadas, a lados opuestos de una falla (±).

 

 

– Implosión. El terreno baja en el primer movimiento y el sismógrafo vertical dará su primer trazo de la onda P hacia arriba.

 

 

– Explosión. Caso contrario al anterior, la primera onda P será hacia abajo, porque el terreno ha subido.

 

 

– Desgarre. Si hay falla de rumbo necesitamos cuatro sismógrafos dispuestos como en la fig. 97, dos de ellos mostrarán compresión (+) en el registro, los otros dos, rarefacción o distensión (-). Ello se explica por el efecto de acordeón.

 

 

Para conocer el epicentro de un sismo se toman registros de tres estaciones lejanas, en cada uno se establece la diferencia de tiempo de arribo entre las ondas P y S. Así, en función de sus velocidades, las distancias epicentrales con centro de compás en las estaciones y con radios a escala, según las distancias epicentrales obtenemos en el plano el epicentro del sismo. Aquí la profundidad del foco tiene que ser despreciable.

 

 image020
Figura 97. Sismo por corrimiento. Se ilustra el mecanismo focal de desgarre, asociado a una falla de rumbo.

 

 

 

15.4.5 Amplificación sísmica. Un frente de ondas en la roca suele tener altas frecuencias y en consecuencia alta energía. Cuando las ondas pasan a los depósitos sobre yacientes se amplifican: bajando la frecuencia aumenta la amplitud, pues la energía trata de conservarse.

 

En depósitos mal consolidados, la intensidad puede incrementase en un grado, y en medio grado más cuando el nivel freático está a menos de 10 metros de profundidad. Igualmente las estructuras menos rígidas, como las de bahareque, suelen sufrir mayor daño cuando se construyen sobre sitios de suelos deformables para los cuales se recomienda la construcción de estructuras rígidas.

 

 image022

Figura 98. Espectro de respuesta de un sismo: Izquierda, suelo firme, Derecha, suelo blando, 1. espectro modelado, 2. espectro propuesto, A. aceleración, T. Período. Obsérvense la diferencia de altura en las mesetas y   de las frecuencias a las cuales se dan las máximas amplitudes.

 

 

 

La rigidez de los suelos depende de la potencia de los depósitos como de las características de compacidad para los suelos gruesos, o de consistencia para los suelos finos. Posiblemente la topografía y geometría de los depósitos se constituyan en factores relevantes.

 

Si las estructuras como casas y construcciones bajas suelen tener frecuencias naturales de oscilación de 10 Hz, y edificaciones esbeltas frecuencias menores que 1 Hz, resulta conveniente construir casas en suelos blandos y edificios en suelos duros, evitando el fenómeno de resonancia.

 

Colombia tiene un Código colombiano de construcciones sismo resistentes, elaborado por la asociación colombiana de ingeniería sísmica y aprobado por decreto 1400 de 1984. Tiene una Red Sísmica Nacional administrada por el Ingeominas y Redes Regionales en el Valle (OSSO) y en el Eje Cafetero-Tolima. También un Sistema Nacional para la Prevención y Atención de Desastres, creado en 1990.

 

 

 

15.4.6 Escalas de intensidad y magnitud

 

 

– Intensidad. La intensidad que alude a los daños es subjetiva y depende de la calidad de construcción y el tipo de suelo; un sismo puede mostrar intensidades diferentes, en lugares diferentes. Se califica con la escala Mercalli‑Cancani (Mercalli modificada) que tiene 12 grados, algunos son:
I. Se observa comportamiento anómalo en algunos animales, difícilmente la gente los siente.

 

III. Si sólo se siente en edificios, en la casa las lámparas se balancean.
V. Sentido por toda la gente. En la casa, caen los objetos de la estantería.

 

VII. Produce pánico y daños. Cae la mampostería, revientan tuberías, etc..

 

XII. Destrucción total. Es el límite superior de la escala.

 

 

– Magnitud. La magnitud depende de la energía en el foco, se mide en una escala continua y no en grados. La magnitud se mide en la escala de Richter; cada sismo tiene una sola magnitud. Magnitud cero se da si la amplitud instrumental en un sismógrafo patrón, ubicado a 100 Km. del foco, es 10° micras, es decir, de una micra. Magnitud 3 si es de 103 micras o sea de 1 milímetro; magnitud -2 si esa magnitud es de 10 – 2 micras.

 

Entre una y otra magnitud con diferencia de 1 unidad, la energía varía 31.5 veces; entre m = 0 y m = +9 esta se incrementa 31.5 a la 9 veces.

 

En un año hay 154 sismos m = 6 y 17 m = 7; cada tres años y medio hay uno m = 8.6; cada 90 años solo uno m = 9; Tumaco en 1906, Japón en 1923 y Lisboa en 1755 son los máximos terremotos registrados, todos con una magnitud m = 8.9 y un número de víctimas estimadas de 700, 143 mil y 30 mil a 60 mil respectivamente.

 

Según la teoría de la brecha se pueden hacer pronósticos buscando sombras sísmicas, es decir, lugares sísmicos con un período transcurrido sin la ocurrencia de un terremoto probable. Para el 2000 se esperaba otro sismo de magnitud 6 o 7 en Caldas porque los de esta magnitud, asociados a una misma fuente sismotectónica (zona de subducción), tienen períodos entre 20 y 30 años en esta región. En efecto, en 1994 y 1995 se dieron dos sismos asociados a esa fuente, uno al occidente de Tuluá y otro al occidente de Manizales.

 

 

 

15.5 RIESGO SISMICO

 

 

15.5.1 Principales peligros en un terremoto

 

 

– Primer grupo. Temblor del suelo, asentamientos diferenciales de la estructura, hundimientos del suelo, deslizamientos y avalanchas.

 

 

– Segundo grupo. Desplazamiento del suelo a lo largo de una falla.

 

 

– Tercer grupo. Maremotos (Tsunamis) y seiches (oscilaciones en lagos y embalses), inundaciones por daños en embalses y ruptura de diques y conducciones hidráulicas.

 

 

– Cuarto grupo. Incendios, colapso de estructuras y acabados.

 

 

 

15.5.2 Estudio de riesgo sísmico para un punto particular

 

 

– Estudios geológicos. Tectónica regional y régimen de deformación, cartografía de fallas capaces importantes en un área de 100 Km. de radio. Determinación del tipo de fallas. Pruebas en pro y en contra de la actividad reciente de las fallas. Evidencias en el terreno de asentamientos, inundaciones y deslizamientos conexos.

 

 

– Estudios de ingeniería de suelos. Informes de campo sobre los terrenos de cimentación (capacidad portante, etc.) y estudios de estabilidad. Tratamiento especial de la inestabilidad por hundimiento o por falla de pendiente, modificación de los parámetros de diseño para movimientos fuertes cuando sea necesario.

 

 

– Estudios sismológicos. Determinación de terremotos históricos locales, cartografía de epicentros sísmicos. Estudio temporal de la relación recurrencia de intensidad‑recurrencia de magnitud, para la zona. Evaluación de las intensidades históricas en la vecindad. Correlación entre focos sísmicos y fuentes sísmicas sobre la cartografía, estimación de futuras intensidades (aceleración, velocidad y desplazamiento) cerca del lugar y con la probabilidad de recurrencia. Selección de registros de movimientos fuertes de terremotos pasados que mejor representen las intensidades probables.

 

 

 

15.5.3 El aporte del geotecnista a la ingeniería sísmica.

 

 

– Fuentes y trayectorias. Entre los parámetros sismológicos asociados a estudios de riesgo sísmico, tenemos los que definen y cuantifican las ondas sísmicas que inciden en los suelos que soportan nuestras ciudades. Deben caracterizarse los focos de actividad sísmica describiendo los mecanismos focales, naturaleza de las dislocaciones y esquemas sismotectónicos del orden regional, además, conocerse las trayectorias de las ondas caracterizando el movimiento ondulatorio, describiendo las estructuras del subsuelo, su topografía superficial y profunda, y características de los materiales rocosos. Aquí la evaluación de la trayectoria de las ondas sísmicas supone el empleo de algunas ecuaciones de atenuación. Ya a distancia del foco, se debe evaluar el potencial sísmico a nivel de la roca que sirve de basamento a cada ciudad, cuantificando la magnitud, aceleración máxima y período de retorno de los eventos sísmicos. Finalmente se entra a estudiar las condiciones locales de los depósitos de suelo que cubren el basamento (geometría de depósitos y propiedades dinámicas de sus materiales) con el fin de identificar la respuesta sísmica.

 

 

– Interacción suelo- estructura. Con este itinerario se cae a un problema típico de dinámica de suelos, en el que se deben conocer las propiedades dinámicas de cada estrato de suelo y del conjunto, así como la respuesta sísmica de un lugar específico y el efecto de las vibraciones en el suelo considerado como estructura, y también en el conjunto suelo-estructura (aludiendo aquí a las construcciones). Siendo el sismo un movimiento ondulatorio asociado a la liberación de energía en un medio elástico, puede darse el fenómeno de resonancia por semejanza entre los períodos de vibración (o frecuencias) del sismo, del suelo y de la estructura (cualquier construcción o depósito de suelo tiene un período natural de oscilación que lo caracteriza).

 

 

– Tipos de suelos. En estos estudios se pueden considerar dos tipos de suelos para efectos prácticos; los depósitos blandos mal consolidados en los que los esfuerzos cortantes crecen sin que necesariamente lo hagan los movimientos del suelo, suelos que después de la excitación quedan intactos, y los depósitos granulares sueltos y saturados que desarrollan grandes deformaciones, dando lugar a deslizamientos de tierra o a su licuación. Debe advertirse que las cargas dinámicas asociadas a sismos son complejas, pues difieren en magnitud, dirección y frecuencias. La idealización del sismo permite considerar un tren de esfuerzos cortantes (como también de ondas de compresión) que se desplaza desde el foco y hasta las ciudades, a través de las diferentes unidades de rocas, cruza los estratos de los depósitos que las cubren, y alcanza en su viaje las estructuras de las construcciones que habitamos. En ese viaje cambian su trayectoria, magnitud y frecuencia. Las oscilaciones del terreno también se caracterizan por ser cíclicas y rápidas resultando por ello sometidos los suelos a condiciones de cargas dinámicas bajo condiciones no drenadas (si el suelo está saturado el agua no tiene tiempo de salir).

 

El comportamiento del suelo ante sismos y en condiciones saturadas es preocupante porque, para grandes deformaciones por esfuerzos de corte, se puede producir una acumulación gradual de la presión de poros dentro del depósito de suelo, en detrimento de los esfuerzos efectivos, tal que si el número de aplicaciones de carga resulta suficiente, los esfuerzos efectivos se anulan, quedando el suelo licuado si su resistencia al corte es de tipo friccional; el suelo así se ha transformado en un pantano. Después del proceso y cuando las presiones de poros se han disipado el suelo volverá a su condición hidrostática sufriendo densificación por reacomodo de su estructura (el pantano se vuelve tierra firme y se asienta).

 

 

– Algunas lecciones. Para resaltar la importancia de una evaluación de las características de los depósitos blandos ante solicitudes dinámicas y la necesidad de ubicar acelerógrafos sobre depósitos blandos y rocas del basamento, como fase fundamental para los estudios de microzonificación sísmica, se muestran los siguientes ejemplos: en los terremotos de Chile y Alaska (1991) hubo fallas de laderas, asociadas a efectos combinados del incremento de los esfuerzos cortantes en el suelo y las amplificaciones locales por topografía, en estratos arcillosos. En el terremoto de Méjico (1985) y en el de Loma Prieta (1989) en los depósitos de suelos finos blandos, con espesores de hasta 100 y 200 metros respectivamente, las amplificaciones de las aceleraciones horizontales máximas fueron de 2 a 4 veces, mientras las de las aceleraciones espectrales máximas fueron de 8 a 15 veces y de 3 a 6 veces respectivamente. Estos terremotos cambiaron completamente los conceptos sobre la respuesta de las arcillas blandas ante cargas sísmicas. Experiencias teóricas en el Valle de Ashigara Japón (1992) muestran que en la práctica es difícil evaluar la respuesta dinámica de depósitos aluviales o coluviales que incluyan diferentes tipos de suelos y cambios topográficos simultáneamente.

 

 

– El resultado. El producto importante derivado del conocimiento de las características de la respuesta sísmica de los depósitos de suelos, en las zonas habitadas, es la mitigación o reducción del riesgo sísmico. Gracias a la instalación de una red sísmica y de acelerógrafos, se le permite a la ingeniería sísmica aplicar sus metodologías, técnicas y estrategias, no sólo para evaluar la vulnerabilidad de las construcciones y obras ya ejecutadas y construir las nuevas de manera segura, sino también para modificar el nivel de seguridad o de servicio de las estructuras que lo ameriten, de acuerdo a su resistencia, a su funcionalidad y a su vulnerabilidad.                                                                                                                                     

 

 

 

15.5.4 Mapa de microzonificación sísmica. Para la preparación del mapa de microzonificación se requiere adoptar un método interdisciplinario, teniendo en consideración la sismología, la geología, ingeniería y el medio ambiente edificado. A continuación se proponen tres etapas operacionales, presentadas por el Laboratorio de Sismología y Vulcanología de la Universidad de Costa Rica.

 

 

– 1º Etapa. Elaboración de mapas adecuados a los requisitos de las zonas urbanizadas interesadas, delineación de los aspectos concretos del método. Recopilación y tratamiento de datos multidisciplinarios requeridos, incluyendo los obtenidos de experiencias internacionales.

 

A los mapas temáticos se les asigna una serie de parámetros, su calificativo y un valor que se determina con base en:

 

 

 

Tabla 18. Valoración de parámetros para la microzonificación.

 

 Parámetro  Calificativo  Valor 
Tipo de suelo, de acuerdo a su consolidación S
Roca (S1) bajo 1
Suelo firme (S2) medio 2
Suelo blando (S3) alto 3
Muy blando (S4) muy alto 4
Períodos naturales del suelo (segundos) P
0,1 – 0,4 muy bajo 1
0,1 – 0,5 medio 2
0,1 – 0,6 alto 3
>0,6 muy alto 4
Topografía (pendiente en grados) T
0   – 10 muy bajo 1
10 – 20 bajo 2
20 – 30 medio 3
30 – 40 muy alto 4
Aceleraciones máximas (porcentaje de la gravedad) M
0     – 0,15 muy bajo 1
0,15 – 0,30 bajo 2
0,30 – 0,40 alto 3
>0,40 muy alto 4

 

  1. Ramírez. Metodología para la microzonificación sísmica, Universidad de Costa Rica, 1995.

 

 

– 2º Etapa. Se adopta una metodología para la combinación de los factores anteriores, considerando que la amplificación sísmica ocurre cuando en determinado tipo de suelo y con un cierto período de duración se alcanza un grado de susceptibilidad, y que bajo estas condiciones la sismicidad actúa como elemento detonante.

 

Se considera que el grado de amenaza es el producto de la energía del sistema por la susceptibilidad y la acción de los elementos detonantes o de disparo. Aquí se asumirá que el primer factor es unitario.

 

 

Amenaza (A) = 1 x susceptibilidad (Z) por detonante (D)

 

El valor de la susceptibilidad se compone a su vez de tres parámetros (valor del tipo de suelo (S), período natural del suelo (P) y topografía (T)). A su vez el factor detonante se compone del parámetro aceleración máxima (M). Haciendo la compilación de factores se tiene la ecuación:

 

A = 1 x Z x D

A = 1 x (S x P x T) x (M)

 

 

El grado de amenaza y los intervalos preliminares, de conformidad con el resultado que se obtiene de aplicar los valores de atrás en la anterior ecuación son:

 

Bajo 1 – 16
Medio 16 – 36
Intermedio 36 – 54
Alto 54 – 72
Muy alto >72

 

 

– 3º Etapa. Se lleva esta información de una forma adecuada a los usuarios para que se establezcan planes de manejo del uso de la tierra, ordenación física del territorio y planes de prevención de desastre sísmico. Este plan se puede llevar a cabo por medio de conferencias, foros y un pequeño folleto que explique en forma concisa el uso del mapa de microzonificación sísmica.

 

 

– Limitaciones. La metodología permite una aproximación de las áreas con amenaza de amplificación sísmica. El método identifica áreas donde se debe tomar en consideración las características de las condiciones geológicas superficiales (suelos) y ayuda a definir los factores de amplificación dinámica para perfiles de suelo firme, blando y muy blando, también permite orientar recursos a estudios geológicos, geotécnicos y geofísicos para el desarrollo de la infraestructura urbana.

 

 

 

15.6 RIESGO SISMICO EN COLOMBIA Y EL EJE CAFETERO

 

Existen sobre la Tierra regiones prácticamente asísmicas. Son los cratones o núcleos estables de los continentes, como el Escudo Guyanés, el Escudo Brasilero y el Escudo Canadiense, para el caso de América. Contrariamente, las regiones sísmicas son el Cinturón Circumpacífico y la línea Alpes-Caúcaso-Himalaya.

 

 

 

15.6.1 Fuentes sísmicas de Colombia. En Colombia los sismos son frecuentes en la región del pacífico y andina, eventuales en la caribe y escasos en la orinoquía y la amazonía. Casi toda la población del país habita zonas del alto y moderado riesgo sísmico. En Colombia los sismos intraplaca son someros e intensos en la región del pacífico y profundos y menos leves sobre la región andina. Hay singularidades en Riosucio (Chocó) y en la región de Bucaramanga, como también fallas de gran actividad en la joven cordillera Oriental y en otras regiones del país, según lo visto atrás.

 

La falla Atrato afecta a los departamentos del Valle del Cauca, Chocó y Antioquia. La falla de Romeral atraviesa los departamentos de Nariño, Cauca, Tolima, Quindío, Risaralda, Caldas, Antioquia, Córdoba, Sucre, Bolívar y Magdalena.

 

 

 

 image024
Figura 99. Zonas de riesgo sísmico y fuentes sismotectónicas en Colombia. 1. zona de alto riesgo, 2. Zona de riesgo moderado, 3. Zona de bajo riesgo. 4. placa Nazca, 5. Placa Suramericana, 6. Placa Caribe, 7. Fosa colombo-ecuatoriana, 8. Fosa Darién-Urabá (?), 9. Falla Cauca, 10. Falla Romeral, 11. Falla Santa Marta-Bucaramanga, 12. Falla Bocono, 13. Falla frontal. Fuentes: Red Sísmica del eje Cafetero y Tolima, Asociación Colombiana de Ingeniería Sísmica y Sistema Nacional para la Prevención y Atención de Desastres.

 

 

La falla del Cauca recorre los departamentos de Nariño y Cauca. La falla de Palestina cruza los departamentos de Tolima, Caldas, Antioquia y Bolívar. La falla de Santa Marta-Bucaramanga afecta a los departamentos de Cundinamarca, Boyacá, Santanderes, Cesar y Magdalena.

 

 

La falla Guaicaramo cruza los departamentos del Meta, Cundinamarca, Boyacá y Arauca. También se han registrado sismos en Puerto Carreño, Putumayo y San Andrés.

 

 

 

  • Amenaza sísmica en el Eje Cafetero. El Eje Cafetero está localizado en una de las zonas de alto riesgo sísmico de Colombia. Los sismos de 1938, 1961-62, 1979 y 1985 ponen en evidencia una fuente sísmica de importancia, generadora de sismos de magnitud cercana a 7 grados e intensidades de VII, la que por la profundidad (70 a 100km.) y posición de los focos (basamento de la Cordillera Occidental) se ha relacionado con la zona de subducción de la Placa de Nazca (Pacífico). Las aceleraciones registradas, han alcanzado valores del 11% de la gravedad.

 

Pero las fallas del sistema Cauca-Romeral y las que delimitan la fosa tectónica del Magdalena son dos fuentes sísmicas que merecen consideración en esta poblada región. Los terremotos superficiales de Popayán 1983 y Quindío 1999, con magnitud 6 e intensidad VIII, anuncian una segunda fuente sísmica de implicaciones diferentes. Las aceleraciones en los depósitos mal consolidados, han alcanzado aceleraciones hasta 5 veces superiores a las registradas en los sismos profundos, aunque en intervalos de tiempo muy pequeños.

 

Esta temática ha sido uno de los principales objetivos de técnicos y científicos que laboran en el Programa de la Red Sísmica del Eje Cafetero y el Tolima, para poder llegar a lo que se conoce como respuesta sísmica. Es importante señalar que las tres ciudades capitales de la conurbación cafetera, están sobre potentes abanicos asociados a depósitos fluviotorrenciales de origen volcánico, asociados a los ríos Chinchiná, Otún y Quindío. El de Manizales anuncia levantamiento desde el terciario tardío hasta el holoceno. La formación Manizales con sus depósitos fluviotorrenciales a la altura de Chipre y Villa Kempis, anuncia el levantamiento respecto a Villamaría y Morrogacho.

 

 

Las características sismotectónicas de la región apenas empiezan a conocerse y el catálogo de información sísmica se remonta apenas a algunas décadas, manteniendo lagunas, imprecisiones e inconsistencias. No se sabe aún como se atenúa la intensidad en función de la magnitud y distancia focal del sismo y a lo sumo podríamos suponer que la actividad sísmica del futuro tendrá alguna semejanza con la del pasado. Aún deberá caracterizarse mejor las fuentes sismotectónicas identificadas y conocer otras que puedan provocar sismos destructores aunque locales.

 

Como no es posible aún, predecir los fenómenos sísmicos de un modo determinista se ha recurrido a modelos probabilísticos cuya eficacia depende de la validez, cantidad, calidad y extensión de los datos que alimentan el modelo. Pero dada la limitación en nuestras bases de datos, se ha buscado representar la historia sísmica con la recurrencia de las magnitudes generadas por las diferentes sismofuentes, asumiendo su localización y unas determinadas leyes de atenuación de intensidad, donde las variables se modelan con características aleatorias dada la incertidumbre de los registros y del fenómeno en sí (modelo estadístico bayesiano).

 

Se parte del presupuesto de que la intensidad es la variable más determinante en los daños sísmicos y que la calibración de los resultados finales y consistencia entre tasas de excedencia de magnitudes e historia sísmica se obtiene con el catálogo sísmico del lugar.

 

Ciertamente la incertidumbre e imprecisión inherentes a un tratamiento estadístico, no resultan aceptables al evaluar el impacto sobre el total de pérdidas que pueden tener las obras de infraestructura comunitaria, razón por la cual cada caso (cada línea vital o cada centro de servicio) debe ser tratado particularmente. La vulnerabilidad física de una estructura se describe en términos de la aceleración basal, el período fundamental de vibración de la estructura y la función de daños.

 

 

Lecturas complementarias

 

 

 

Teoría del círculo de Mohr.

El Círculo de Mohr es una herramienta de la ingeniería utilizada para la representar gráfica de un tensor simétrico, mediante la cual se pueden calcular y calcular momentos de inercia, esfuerzos y deformaciones adaptando estos elementos a las propiedades de la circunferencia. Análisis bidimensional de esfuerzos, Estados especiales de esfuerzos, y Diagrama p – q para la trayectoria de esfuerzos

Ver en:  http://www.bdigital.unal.edu.co/1864/12/cap11.pdf

 

 

Anotaciones sobre el riesgo sísmico en Manizales.

Manizales está ubicada en una zona donde los sismos de 1938, 1961-62, 1979 y 1995 ponen en evidencia una fuente sísmica profunda con eventos cada 15 o 20 años, generadora de sismos de magnitud cercana a 7 grados desde la zona de subducción; pero las fallas del sistema Cauca-Romeral son otra fuente que merece mayor consideración, dadas las devastadoras consecuencias de estos sismos, como los de Popayán 1983 y Quindío 1999, capaces de producir eventos superficiales de magnitud 6 pero de mayor intensidad, para los que falta mayor nivel de preparación. DE conformidad con la Ley, las obras civiles deben contemplar sismos cuyo período de retorno no sea inferior a 475 años. Al del Quindío, pudo corresponderle unos 750 años (Ver imagen CIMOC 2002), pero el diseño de obras para eventos de esta naturaleza, por su alto costo y espaciamiento temporal no procede, pues de lo contrario la ciudad en si conjunto no resultaría viable.

Ver en: http://www.bdigital.unal.edu.co/5949/1/gonzaloduquescobar.201210.pdf

 

 

Sismos y volcanes en el Eje Cafetero: Caso Manizales.

Para subrayar el desafío y naturaleza de la tarea que se demanda, me permito dos ideas sumarias: 1- Aunque la amenaza del Ruiz no resulte significativa para la ciudad frente a una erupción pliniana comparable a los eventos históricos de 1595 y 1845, salvo una erupción lateral dirigida, evento poco probable pero con una dirección desfavorable, y a pesar de conocer los daños ocasionados en Manizales por los sismos profundos ya señalados, habrá que empezar a tomar acciones de largo plazo y extremada urgencia frente a la amenaza volcánica de Cerro Bravo aprovechando su período de calma. 2- Paralelamente, se deben mejorar las condiciones de sismo-resistencia y seguridad ignífuga en caso de sismo, dado lo ocurrido en Popayán y Armenia y el advenimiento del gas, para sortear tarde que temprano un sismo superficial en el entorno vecino de la falla Romeral.

Ver en: http://www.bdigital.unal.edu.co/6544/187/gonzaloduqueescobar.201220.pdf

 

 

 

Un tinto para la reconstrucción del Eje Cafetero.

Consideraciones sobre las características socioambientales y socioeconómicas del desastre asociado al terremoto del 25 de enero de 1999, y sobre la vulnerabilidad y otras condiciones culturales preexistentes, relacionadas con el un modelo de producción en el que se advierte un deterioro de los términos de intercambio, además de un modelo productivo soportado en prácticas productivas ambientalmente conflictivas.

Ver en: http://www.galeon.com/gonzaloduquee/tinto.pdf

 

 

 

 

Manual de Geología para ingenieros

(2003) Rev. 2014.

 image007

 

Gonzalo Duque-Escobar. Universidad Nacional de Colombia

http://www.bdigital.unal.edu.co/1572/

 Presentación

Contenido

Cap01 Ciclo geológico

Cap02 Materia y Energía

Cap03 El sistema Solar

Cap04 La Tierra sólida y fluida

Cap05 Los minerales

Cap06 Vulcanismo

Cap07 Rocas ígneas

Cap08 Intemperismo ó meteorización

Cap09  Rocas sedimentarias

Cap10 Tiempo geológico

Cap11  Geología estructural

Cap12 Macizo rocoso

Cap13 Rocas Metamórficas

Cap14 Montañas y teorías orogénicas

Cap15 Sismos

Cap16 Movimientos masales

Cap17 Aguas superficiales

Cap18 Aguas subterráneas

Cap19 Glaciares y desiertos

Cap20 Geomorfología

Lecturas complementarias

Bibliografía

 

Anexo 1: Túnel Manizales http://www.bdigital.unal.edu.co/2046/

Anexo 2: Mecánica de los suelos http://www.bdigital.unal.edu.co/1864/

Anexo 3: Gestión del riesgo http://galeon.com/manualgeo/riesgo.pdf

Anexo 4: La Luna http://www.bdigital.unal.edu.co/1663/

Anexo 5: Economía para el constructor http://www.bdigital.unal.edu.co/1698/

 

El Autor Gonzalo Duque-Escobar

HOME

http://www.bdigital.unal.edu.co/1572

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: